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SUMMARY

In this paper we construct an upwind compact �nite di�erence scheme with group velocity control for
better simulation of compressible �ow �elds. Compared with traditional di�erence schemes, compact
schemes have higher accuracy for the same stencil width. By means of the characteristic analysis
of the operators, the group velocity of wave packets will be controlled to suppress the non-physical
oscillations in numerical solutions. In numerical simulation of the 3D compressible �ow �elds the third-
order accurate upwind compact operator is used to approximate the derivatives in the convection terms
of the compressible N–S equations, the traditional �nite di�erence scheme is used to approximate the
viscous terms. Numerical solutions indicate that the method is satisfactory. Copyright ? 2004 John
Wiley & Sons, Ltd.

KEY WORDS: upwind compact �nite di�erence method; group velocity control; shock capture tech-
nique; non-physical oscillations; TVB property; compressible �ow �elds

1. INTRODUCTION

In recent years, a number of high-order accurate �nite di�erence schemes have been devel-
oped for better simulation of the complex �ow �elds. The key point for correctly simulating
the complex �ow �elds with a range of scales is that the method can capture well the vor-
tices with small scales and shocks. Traditional second-order total variation diminishing (TVD)
schemes have high resolution of the shocks. However, there are some undesirable defects.
First, these schemes drop to �rst-order spatial accuracy at local extreme. Next, when it is
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used to solve the viscous �ows especially to solve the problem at high Reynolds number, the
numerical dissipation may exceed the physical dissipation. It leads to unsatisfactory results.
Fu and Ma [1] pointed out that the restriction on the mesh Reynolds number can be relaxed
with higher accurate schemes. Therefore, it is necessary to develop high-order accurate �nite
di�erence schemes. For the traditional two-level explicit schemes, we have to use at least
(N+1) nodes to achieve N th-order accuracy. When N is large, the stencil is surprisingly wide,
thus neither compact nor e�cient. Furthermore, the treatment of boundary is also di�cult.
Consequently the number of numerical boundary conditions is increased. Meanwhile many
existing schemes with high resolution of the shock are complicated and expensive. Due to two
attractive features of the compact schemes and upwind compact schemes: high-order accuracy
and small stencil, these schemes become popular in CFD area. Compact schemes are methods
where the derivatives are approximated not by polynomial operators but by rational function
operators on the discrete solutions.
In previous papers, Leonard [2] suggested using a third-order upwind di�erence for the

convection term in the hyperbolic equations. In Reference [3], Rai and Moin presented sim-
ulations of a turbulent channel �ow by using a high-order upwind biased �nite di�erence
scheme. Ma and Fu [4] developed a high-order accurate upwind compact scheme, which has
been successfully used to simulate the compressible mixing layers. In 1992, Lele [5] inves-
tigated the compact �nite di�erence schemes with spectral-like resolution and simulated the
mixing layer with the schemes. In 1996, E and Liu [6] used the compact schemes to simu-
late the incompressible �ow. The computed results are satisfactory. In 1998, Zhu and Ma [7]
developed an upwind compact scheme to solve the hyperbolic conservation laws. Chu and
Fan [8] studied a three-point combined compact di�erence scheme. The major features of this
scheme are: three point, implicit, sixth-order accuracy, and inclusion of boundary values. Due
to its combination of the �rst and second derivatives, the scheme becomes more compact
and more accurate than normal compact di�erence schemes. In [9] Yabe et al. presented a
universal solver for hyperbolic equations by introducing a function interpolated by a cubic
polynomial between two end points. They introduced a review of the constrained interpolation
pro�le (CIP) method for solid, liquid, gas and plasma. This method has a compact support
and sub-cell resolution, including a front-capturing algorithm with functional transformation,
a pressure-based algorithm and other miscellaneous physics such as the elastic-plastic e�ect
and surface tension. In these two methods, only two grids are necessary for the 3rd order and
three grids for the 5th order. However, these schemes are very complicated and expensive.
The purpose of this paper is to develop a simple and e�ective numerical method for better

simulation of the complex �ow �elds with shock waves. The reason of oscillation production
in numerical solutions is because of non-uniform group velocity of wave packets. In order
to improve the shock resolutions we propose a high-order accurate upwind compact �nite
di�erence scheme with group velocity control. We follow the TVD ideas and try to control
the group velocity of wave packets to avoid spurious oscillations while keeping the formal
accuracy of the scheme. Notice that the compact scheme is global due to the tri-diagonal
inversion. By means of the idea of a local mean we construct an upwind compact scheme with
group velocity control to calculate the discontinuities. The scheme can keep the third-order
accuracy in smooth regions. The implicit time discretization is used in this investigation. The
characteristic analysis of the operators is given in Section 2. The upwind compact operator with
group velocity control (UCGVC3) is analysed in Section 3; The applications of the methods
to approximate the N–S equations are presented in Section 4, some numerical examples and
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computed results of the model equations are given in Sections 5. The numerical simulations
of compressible �ow �elds are given in Section 6.

2. CHARACTERISTIC ANALYSIS OF OPERATORS

Consider the one-dimensional unsteady advection of scalar u with constant positive velocity a.

ut + aux=0 (1)

The solution with the initial condition u(x; 0)= u0(x) is u(x; t)= u0(x − at).
To facilitate the discussion, let L denote the approximate operator of the spatial di�erential

operator d=dx. h−1 · L≈ d=dx. Analyse the following equation,
vt + (a=h)Lv=0 (2)

Here the same initial condition is used. Making a Fourier transform about variable x, we get

v̂t =−a
h
L̂v̂ (3)

where L̂(�)∈C is the symbol of L.

De�nition 2.1 (Dexun Fu and Yanwen Ma [10])
The operator L with a ·Re[L̂(�)]¿0, ∀|�|6� is dissipative, and with a ·Re[L̂(�)]≡ 0, ∀|�|6�
it is non-dissipative. Let Ld denote the set of dissipative operators. Ln denotes the set of
non-dissipative ones.

De�nition 2.2 (Dexun Fu and Yanwen Ma [10])
The operator L with d Im[L̂(�)]=d�61, ∀|�|6� is a slow operator. Let Ls denote the set of
slow operators. The operator L with d Im[L̂(�)]=d�¿1, ∀|�|6� is a fast operator. Lf denotes
the set of fast operators. If ∃�¿�0¿0, The operator L with d Im[L̂(�)]=d�¿1, ∀|�|6�0 and
d Im[L̂(�)]=d�61, ∀�∈[−�;−�0]∪ [�0; �] is a mixed operator. Lm denotes the set of mixed
operators.
In approximate solutions non-linear dependence of Im[L̂(�)] on � leads to non-uniform

group velocity of wave packets. The reason of oscillation production in approximate solu-
tions is non-uniform group velocity of wave packets. In order to prevent the non-physical
oscillations in the vicinity of the discontinuities the group velocity of wave packets must be
controlled. Therefore, the operator L must satisfy the following conditions:

I: Behind the discontinuity, L∈Lf ∩ (Ld ∪Ln) or L∈Lm ∩Ld;
II: In front of the discontinuity, L∈Ls ∩ (Ld ∪Ln).

Given v(x), x∈R1 and a positive parameter h¿0. Eh is a shift operator such that (Ehv)(x)=
v(x + h). The operators of �+x , �

−
x , �

0
x , �

2
x are de�ned as

�+x :=Eh − I; �−
x := I − E−1

h ; �0x :=
1
2 (�

+
x + �

−
x ); �2x := �

+
x �

−
x = �

−
x �

+
x (4)

Here I is an identity operator. The subscript x indicates that the operator is applied in the x
direction.
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The symbols of the operators �+x , �
−
x , �

0
x , �

2
x are

�̂+x = cos �− 1 + i sin �; �̂−
x =1− cos �+ i sin �

�̂0x =
1
2(�̂

+
x + �̂

−
x )= i sin �; �̂2x = �̂

+
x �̂

−
x =2cos �− 2

where −�6�6�, i2 =−1. It is easy to prove the above facts.
Theorem 2.3
If �¿1=6, L= �0x − ��0x �2x + 0:5��2x �2x is a mixed operator, L∈Lm ∩Ld.

Proof
Making a Fourier transform, we get the symbol of L.

L̂= �̂0x − ��̂0x �̂2x + 0:5��̂2x �̂2x = i sin �− i� sin �(2 cos �− 2) + 0:5�(2 cos �− 2)2

= 2�(cos �− 1)2 + i(sin �+ 2� sin �− 2� cos � sin �)

In terms of the De�nition 2.2, if 4� cos2 �− (1 + 2�) cos �− 2�+160, d Im�L̂(�)	=d�¿1. If
�¿1=6, ∃�0 = arccos((1=4�)− 1

2 ), when |�|6�0, we have

d Im[L̂(�)]=d�¿1: − �6�6−�0 or �06�6�;
d Im[L̂(�)]=d�61: Hence L∈Lm:

On the other hand, a · Re[L̂(�)]=2a · �(cos �− 1)2¿0, ∀|�|6� implies L∈Ld. Therefore,
if �¿ 1

6 , L∈Lm ∩Ld.

Similar to Theorem 2.3, we have the following theorem.

Theorem 2.4
L= �0x + ��

0
x �
2
x + 0:5��

2
x �
2
x ,

1
2¿�¿0 is a slow operator, L∈Ls ∩ (Ld ∪Ln).

Proof
The proof is similar to the above theorem and is thus omitted.

The stencils of the operator L can be expressed as

a ¿ 0
−−−−−→

j − 2 j − 1 j j + 1 j + 2
× × ⊗ ×

Behind the discountinuity; L = �0x − ��0x�2x + 0:5��2x�2x ; � ¿ 1
6

× ⊗ × ×
In front of the discountinuity; L = �0x + ��

0
x�
2
x + 0:5��

2
x�
2
x ;
1
2 ¿ �¿ 0
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Given vj= v( jh), j∈Z , we have

(1=h)(�0x − ��0x �2x + 0:5��2x �2x )vj=(1=h)
[
�vj−2 − (

1
2 + 3�

)
vj−1 + 3�vj +

(
1
2 − �) vj+1] (5)

where �¿ 1
6 . If �=

1
2 , we get the three-node second-order accurate upwind operator (1=h)L(vj)

= (1=2h)(vj−2 − 4vj−1 + 3vj)

(1=h)(�0x + ��
0
x �
2
x + 0:5��

2
x �
2
x )vj=(1=h)

[− (
1
2 + �

)
vj−1 + 3�vj +

(
1
2 − 3�) vj+1 + �vj+2] (6)

where 1
2¿�¿0. If �=0, we get the central di�erence operator (1=h)L(vj)= (1=2h)(vj+1−vj−1).

We can see that the mixed operators (1=h)L=(1=h)(�0x − ��0x �2x + 0:5��2x �2x ), �¿ 1
6 and the

slow operators (1=h)L=(1=h)(�0x+��
0
x �
2
x+0:5��

2
x �
2
x ),

1
2¿�¿0 are second-order accurate biased

di�erence operators. They occupy the nodes of ( j−2; j−1; j; j+1) and ( j−1; j; j+1; j+2),
respectively. Actually TVD scheme is a kind of adaptable methods, the three-node second-
order accurate upwind operator, (1=h)L(vj)= (1=2h)(vj−2−4vj−1+3vj) is employed behind the
shock, in front of the shock the central di�erence operator (1=h)L(vj)= (1=2h)(vj+1 − vj−1) is
used. It is implemented by a minmod function. We follow this idea and construct an upwind
compact method with group velocity control. This method satis�es the TVB property. The
mean �vj :=Avj=(16 + �)vj−1 +

2
3vj+(

1
6 − �)vj+1 of vj is used to replace vj. Here A is a N ×N

matrix. The above-mentioned operators are applied on �vj. Under appropriate conditions TV(�v)
is diminishing. A recovery from �vj to vj is needed. If the transpose of A is strongly diagonally
dominant, we will see that TV(v) is bounded.

3. THIRD-ORDER ACCURATE UPWIND COMPACT OPERATOR WITH GROUP
VELOCITY CONTROL (UCGVC3)

3.1. One-space dimension

For the conservation form,

ut + f(u)x=0

u(x; 0)=u0(x)
(7)

Consider the semi-discrete form, a compact scheme for solving the equation can be ex-
pressed as

duj
dt
=−1

h
(A−1Bf(u))j ≡L(u)j (8)

where A, B are both local operators. The tri-diagonal inversion A−1 is not local. Here A= I −
2��0x +

1
6�
2
x , B= �

0
x − 2��2x , (− 1

3¡�¡
1
3 ). We de�ne

�uj := Auj=
(
1
6 + �

)
uj−1 + 2

3 uj +
(
1
6 − �) uj+1 (9a)

Buj =
(
1
2 − 2�) uj+1 + 4�uj − ( 12 + 2�)uj−1 (9b)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:463–482



468 Q. ZHU AND Y. LI

The scheme (8) can be expressed as

d �uj
dt
=−1

h
(�0x − 2��2x )f(u)j (10)

To avoid spurious oscillations while keeping the formal accuracy of the scheme we employ
a switching function ‘’j’ [11],

’j=



1;

|uj+1 − 2uj + uj−1|
0:5(|uj+1 − uj|+ |uj − uj−1|) + 0:5|uj+1 + 2uj + uj−1|¿�

0;
|uj+1 − 2uj + uj−1|

0:5(|uj+1 − uj|+ |uj − uj−1|) + 0:5|uj+1 + 2uj + uj−1|¡�
(11)

where � is a threshold. ’j=1 in the vicinity of shocks and ’j=0 in smooth regions. The
switch function ’j can guarantee that the obtained scheme is O(h3) in smooth regions.
In accordance with Theorems 2.3 and 2.4 the upwind compact scheme with group velocity

control can be constructed as follows (�= 1
2),

d �uj
dt
=−1

h
�0x [f(u)j − ’j(f(u)j − f( �u)j)] + 1

2h
�0x [’j · ssja�2x �uj]−

1
4h
�2x [’j · a�2x �uj]

+
2�
h
�2x [f(u)j − ’j(f(u)j − f( �u)j)] (12)

where � ·f′(u)¿0, − 1
3¡�¡

1
3 , a= maxu |f′(u)|. ssj=sgn(�0x �uj · �2x �uj) is called shock structure

function in the present paper. The recovery from �u to u is needed, uj=(I − 2��0x + 1
6�
2
x )

−1 �uj.
This recovery is global.

Theorem 3.1
Semi-discrete Scheme (12) satis�es the TVDM property (total variation bounded in the means)
in the vicinity of discontinuities:

d
dt
TV(�u)60 (13)

Proof
In the vicinity of discontinuities ’j=1, consider the following four cases,
Case 1: ssj+1 = ssj−1 = 1, Semi-discrete form (12) can be rewritten as

d �uj
dt
=
1
h
C+j+1=2�

+
x �uj − 1

h
C−
j−1=2�

−
x �uj

=
1
2h

(
a− f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ 4�

f( �u)j+1 − f( �u)j
�uj+1 − �uj

)
�+x �uj

− 1
2h

[
f( �u)j − f( �u)j−1

�uj − �uj−1
+ a

(
2− �uj−1 − �uj−2

�uj − �uj−1

)
+ 4�

f( �u)j − f( �u)j−1
�uj − �uj−1

]
�−
x �uj (14)
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where

C+;1j+1=2 =
1
2

(
a− f( �u)j+1 − f( �u)j

�uj+1 − �uj

)
; C+;2j+1=2 = 2�

f( �u)j+1 − f( �u)j
�uj+1 − �uj

C−;1
j−1=2 =

1
2

[
f( �u)j − f( �u)j−1

�uj − �uj−1
+ a

(
2− �uj−1 − �uj−2

�uj − �uj−1

)]
; C−;2

j−1=2 = 2�
f( �u)j − f( �u)j−1

�uj − �uj−1

Obviously C+;1j+1=2¿0, C
+;2
j+1=2¿0, C

−;2
j−1=2¿0.

If �uj−1 − �uj−2= �uj − �uj−160, C−;1
j−1=2¿0.

If �uj−1 − �uj−2= �uj − �uj−1¿0, the condition

ssj−1 = sgn(�0x �uj−1 · �2x �uj−1)sgn
[
(�+x �uj−1)

2 − (�−
x �uj−1)

2

2

]
=1

implies | �uj − �uj−1|¿| �uj−1 − �uj−2|. Therefore, �uj−1 − �uj−2= �uj − �uj−1¡1,

C−;1
j−1=2 =

1
2

[
a+

f( �u)j − f( �u)j−1
�uj − �uj−1

+ a
(
1− �uj−1 − �uj−2

�uj − �uj−1

)]
¿0

In this case C+j+1=2 =C
+;1
j+1=2 + C

+;2
j+1=2¿0, C

−
j−1=2 =C

−;1
j−1=2 + C

−;2
j−1=2¿0.

Case 2: ssj+1 = ssj−1 =−1, Equation (12) can be rewritten as
d �uj
dt
=
1
h
C+j+1=2�

+
x �uj − 1

h
C−
j−1=2�

−
x �uj

=
1
2h

[
−f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ a

(
2− �uj+2 − �uj+1

�uj+1 − �uj

)
+ 4�

f( �u)j+1 − f( �u)j
�uj+1 − �uj

]
�+x �uj

− 1
2h

[
f( �u)j − f( �u)j−1

�uj − �uj−1
+ a+ 4�

f( �u)j − f( �u)j−1
�uj − �uj−1

]
�−
x �uj (15)

where

C+;1j+1=2 =
1
2

[
−f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ a

(
2− �uj+2 − �uj+1

�uj+1 − �uj

)]
; C+;2j+1=2 = 2�

f( �u)j+1 − f( �u)j
�uj+1 − �uj

C−;1
j−1=2 =

1
2

(
f( �u)j − f( �u)j−1

�uj − �uj−1
+ a

)
; C−;2

j−1=2 = 2�
f( �u)j − f( �u)j−1

�uj − �uj−1

Obviously C−;1
j−1=2¿0, C

−;2
j−1=2¿0, C

+;2
j+1=2¿0.

If �uj+2 − �uj+1= �uj+1 − �uj60, C+;1j+1=2¿0.
If �uj+2 − �uj+1= �uj+1 − �uj¿0, the condition ssj+1 = sgn(�0x �uj+1 · �2x �uj+1)=−1 implies
| �uj+2 − �uj+1|¡| �uj+1 − �uj|. Therefore, �uj+2 − �uj+1= �uj+1 − �uj¡1,

C+;1j+1=2 =
1
2

[
a− f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ a

(
1− �uj+2 − �uj+1

�uj+1 − �uj

)]
¿0

In this case C+j+1=2 =C
+;1
j+1=2 + C

+;2
j+1=2¿0, C

−
j−1=2 =C

−;1
j−1=2 + C

−;2
j−1=2¿0.
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Case 3: ssj−1 = 1, ssj+1 =−1, Equation (12) can be expressed as

d �uj
dt
=
1
h
C+j+1=2�

+
x �uj − 1

h
C−
j−1=2�

−
x �uj

=
1
2h

[
−f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ a

(
2− �uj+2 − �uj+1

�uj+1 − �uj

)
+ 4�

f( �u)j+1 − f( �u)j
�uj+1 − �uj

]
�+x �uj

− 1
2h

[
f( �u)j − f( �u)j−1

�uj − �uj−1
+ a

(
2− �uj−1 − �uj−2

�uj − �uj−1

)
+ 4�

f( �u)j − f( �u)j−1
�uj − �uj−1

]
�−
x �uj (16)

where

C+;1j+1=2 =
1
2

[
−f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ a

(
2− �uj+2 − �uj+1

�uj+1 − �uj

)]
; C+;2j+1=2 = 2�

f( �u)j+1 − f( �u)j
�uj+1 − �uj

C−;1
j−1=2 =

1
2

[
f( �u)j − f( �u)j−1

�uj − �uj−1
+ a

(
2− �uj−1 − �uj−2

�uj − �uj−1

)]
; C−;2

j−1=2 = 2�
f( �u)j − f( �u)j−1

�uj − �uj−1

Obviously C+;2j+1=2¿0, C
−;2
j−1=2¿0.

If �uj+2 − �uj+1= �uj+1 − �uj60, C+;1j+1=2¿0.
If �uj+2 − �uj+1= �uj+1 − �uj¿0, the condition ssj+1 = sgn(�0x �uj+1 · �2x �uj+1)=−1 implies
| �uj+2 − �uj+1|¡| �uj+1 − �uj|. Therefore, �uj+2 − �uj+1= �uj+1 − �uj¡1,

C+;1j+1=2 =
1
2

[
a− f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ a

(
1− �uj+2 − �uj+1

�uj+1 − �uj

)]
¿0

If �uj−1 − �uj−2= �uj − �uj−160, C−;1
j−1=2¿0.

If �uj−1 − �uj−2= �uj − �uj−1¿0, the condition ssj−1 = sgn(�0x �uj−1 · �2x �uj−1)=1 implies
| �uj − �uj−1|¿| �uj−1 − �uj−2|. Therefore, �uj−1 − �uj−2= �uj − �uj−1¡1,

C−;1
j−1=2 =

1
2

[
a+

f( �u)j − f( �u)j−1
�uj − �uj−1

+ a
(
1− �uj−1 − �uj−2

�uj − �uj−1

)]
¿0

In this case C+j+1=2 =C
+;1
j+1=2 + C

+;2
j+1=2¿0, C

−
j−1=2 =C

−;1
j−1=2 + C

−;2
j−1=2¿0.

Case 4: ssj−1 =−1, ssj+1 =1, Equation (12) can be rewritten as
d �uj
dt
=
1
h
C+j+1=2�

+
x �uj − 1

h
C−
j−1=2�

−
x �uj

=
1
2h

(
−f( �u)j+1 − f( �u)j

�uj+1 − �uj
+ a+ 4�

f( �u)j+1 − f( �u)j
�uj+1 − �uj

)
�+x �uj

− 1
2h

[
f( �u)j − f( �u)j−1

�uj − �uj−1
+ a+ 4�

f( �u)j − f( �u)j−1
�uj − �uj−1

]
�−
x �uj (17)

Obviously C+j+1=2¿0, C
−
j−1=2¿0.
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The TVDM property can be derived immediately in terms of the above results.

For the N ×N matrix A:

A=




. . . . . . . . . 0 0 0 0

. . . . . . . . . 0 0 0 0

. . . 1
6 + �

2
3

1
6 − � 0 0 0

0 0 1
6 + �

2
3

1
6 − � 0 0

0 0 0 1
6 + �

2
3

1
6 − � . . .

0 0 0 0
. . . . . . . . .

0 0 0 0
. . . . . . . . .



N ×N

; −1
3
¡�¡

1
3

(18)

(Strongly diagonally dominant for the transpose of A), then the L1 norm of A−1 is bounded
independent of N . We can prove the following facts:

1. If − 1
3¡�¡− 1

6 , ‖A−1‖L163=2(1 + 3�).
2. If − 1

66�6
1
6 , ‖A−1‖L163.

3. If 1
6¡�¡

1
3 , ‖A−1‖L163=2(1− 3�).

Hence TV(u)=
∑

i |ui+1−ui|=
∑

i |A−1 �ui+1−A−1 �ui|6‖A−1‖L1
∑

i | �ui+1− �ui|6‖A−1‖L1 ·TV(�u0).
The total variation of the numerical solution is bounded. The upwind compact approaches

of the �rst derivative operator (Dv)j := dv=dx can be formulated symbolically as

h−1�c; �x := h
−1A−1B= h−1(I − 2��0x + 1

6�
2
x )

−1(�0x − 2��2x ) (19)

where a · �¿0, − 1
3¡�¡

1
3 . If � 
=0, it achieves the third-order accuracy. If �=0, it has the

fourth-order accuracy. It can be easily computed by the sweeping method.
If �= ± 1

6 , Equation (12) can be rewritten as

duj
dt
=−1

h
�c;1=6x [f+(u)j − ’j(f+(u)j − f+(A+u)j)] + 1

2h
A−1
+ �

0
x [’j · ssja�2xA+uj]

− 1
4h
A−1
+ �

2
x [’j · a�2xA+uj]−

1
h
�c;−1=6x [f−(u)j − ’j(f−(u)j − f−(A−u)j)]

+
1
2h
A−1

− �
0
x [’j · ssja�2xA−uj]− 1

4h
A−1

− �
2
x [’j · a�2xA−uj] (20)

where f±
j =f′±uj; f′±=f′ ± |f′|=2. The operators A+ and A− satisfy A+uj= 1

3uj−1 +
2
3uj,

A−uj= 2
3uj +

1
3uj+1, respectively.
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To facilitate the calculation the above scheme can be simpli�ed as

duj
dt
=−1

h
�c;1=6x f+(u)j − 1

h
�c;−1=6x f−(u)j +

�
2h
�0x [’jssja�

2
x uj]−

�
4h
�2x [’ja�

2
x uj]; �¿0 (21)

where �∼O(1), ssj=sgn(�0x uj�2x uj).
The approximations for the �rst derivative at boundary nodes can be obtained from the

given relationships. Generally speaking, the approximations are one-sides and drop to lower
order accuracy. Sometimes the approximations can be obtained from the actual states of the
�ow �elds.

4. DIFFERENCE APPROXIMATION OF THE N–S EQUATIONS

The 3D dimensionless compressible N–S equations for the perfect gas in the vector form can
be expressed as

@Q
@t
+
@F1
@x

+
@F2
@y

+
@F3
@z
=
@Fv1
@x

+
@Fv2
@y

+
@Fv3
@z

(22)

where the terms on the right-hand side are the viscous terms and F1, F2 and F3 are the �ux
vectors corresponding to the x, y and z co-ordinate directions, respectively. Consider the N–S
equations in general co-ordinate (�; �; &)

@Q̃
@t
+
@F̃1
@�

+
@F̃2
@�

+
@F̃3
@&
=
@F̃v1
@�

+
@F̃v2
@�

+
@F̃v3
@&

(23)

where

Q̃= J−1Q; F̃1 = J−1[�xF1 + �yF2 + �zF3]; F̃2 = J−1[�xF1 + �yF2 + �zF3]

F̃3 = J−1[&xF1 + &yF2 + &zF3]

F̃v1 = J−1[�xFv1 + �yFv2 + �zFv3]; F̃v2 = J−1[�xFv1 + �yFv2 + �zFv3]

F̃v3 = J−1[&xFv1 + &yFv2 + &zFv3]

J =1=[x�(y�z& − y&z�)− x�(y�z& − y&z�) + x&(y�z� − y�z�)]

The �ux vector splitting technique, F̃l= F̃+l + F̃
−
l , l=1; 2; 3, is used for the �ux vectors [12]

F̃±
l =A

±
l Q̃; A±

l = S
−1
l �

±
l Sl; l=1; 2; 3 (24)

where Al is the Jacobin coe�cient matrix corresponding to the �ux vector F̃l, Sl is the matrix
consisted of the left eigenvectors of the matrix Al, �±

l is the diagonal matrix with elements
	±
l , and 	

±
l are eigenvalues of the matrix Al.

The implicit method is used to solve this problem. Let �Q̃= Q̃n+1 − Q̃n, we have[
I +

�t
2
(@�A1 + @�A2 + @&A3)

]
�Q̃=RHS (25)
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Jacobin coe�cient matrix Al (l=1; 2; 3) can be split as{
	(A−

l )=Vl − cl; A−
l = 	(A

−
l )I; A+l =Al − A−

l

	(A−
l )=0 if Vl − cl¿0

; l=1; 2; 3 (26)

where V1 = �xu+�yv+�zw, V2 = �xu+�yv+�zw, V3 = &xu+&yv+&zw and c1 = c
√
�2x + �2y + �2z ,

c2 = c
√
�2x + �2y + �2z , c3 = c

√
&2x + &2y + &2z . c is the local speed of sound.

The backward di�erence operator is used for the matrix Al (l=1; 2; 3) with the positive
eigenvalues, the forward di�erence operator is used for the matrix with the negative eigen-
values. By using the approximate factorization we have


(I + f�+� A

−
1 + g�

+
� A

−
2 + h�

+
& A

−
3 )�Q̃

n+1=2 =RHS

(I + f�−
� A

+
1 + g�

−
� A

+
2 + h�

−
& A

+
3 )�Q̃

n+1 =�Q̃n+1=2
(27)

where f=�t=2��, g=�t=2��, h=�t=2�&. The above equation can be calculated by the
sweeping method. This procedure can be simpli�ed due to the special matrix-splitting scheme.
The right-hand side of the equation can be expressed as

RHS=RHSI + RHSII + RHSIII

RHSI =−�t
��

�c;1=6� F̃+1; ijk − �t
��

�c;−1=6� F̃−
1; ijk − �t

��
�c;1=6� F̃+2; ijk − �t

��
�c;−1=6� F̃−

2; ijk

− �t
�&

�c;1=6& F̃+3; ijk − �t
�&

�c;−1=6& F̃−
3; ijk

RHSII =
�t
��

�0�F̃v1; ijk +
�t
��

�0�F̃v2; ijk +
�t
�&

�0& F̃v3; ijk

RHSIII =
�t
��

��0�[’�(pijk)ss�(pijk)|	�(ijk)|�2�Q̃ijk]−
�t
2��

��2�[’�(pijk)|	�(ijk)|�2�Q̃ijk]

+
�t
��

��0�[’�(pijk)ss�(pijk)|	�(ijk)|�2�Q̃ijk]−
�t
2��

��2�[’�(pijk)|	�(ijk)|�2�Q̃ijk]

+
�t
�&

��0& [’&(pijk)ss&(pijk)|	&(ijk)|�2& Q̃ijk]−
�t
2�&

��2& [’&(pijk)|	&(ijk)|�2& Q̃ijk] (28)

where �c;±1=6� , �c;±1=6� and �c;±1=6& are upwind compact di�erence operators and satisfy the
following relations,

2
3�
c;1=6
� F̃+1; ijk +

1
3�
c;1=6
� F̃+1; i−1jk =

1
6 F̃

+
1; i+1jk +

2
3 F̃

+
1; ijk − 5

6 F̃
+
1; i−1jk ;

1
3�
c;−1=6
� F̃−

1; i+1jk +
2
3�
c;−1=6
� F̃−

1; ijk =
5
6 F̃

−
1; i+1jk − 2

3 F̃
−
1; ijk − 1

6 F̃
−
1; i−1jk

(i=1; 2; : : : ; I − 1)

(29a)
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2
3�
c;1=6
� F̃+2; ijk +

1
3�
c;1=6
� F̃+2; ij−1k =

1
6 F̃

+
2; ij+1k +

2
3 F̃

+
2; ijk − 5

6 F̃
+
2; ij−1k ;

1
3�
c;−1=6
� F̃−

2; ij+1k +
2
3�
c;−1=6
� F̃−

2; ijk =
5
6 F̃

−
2; ij+1k − 2

3 F̃
−
2; ijk − 1

6 F̃
−
2; ij−1k

( j=1; 2; : : : ; J − 1)

(29b)

2
3�
c;1=6
& F̃+3; ijk +

1
3�
c;1=6
& F̃+3; ijk−1 =

1
6 F̃

+
3; ijk+1 +

2
3 F̃

+
3; ijk − 5

6 F̃
+
3; ijk−1;

1
3�
c;−1=6
& F̃−

3; ijk+1 +
2
3�
c;−1=6
& F̃−

3; ijk =
5
6 F̃

−
3; ijk+1 − 2

3 F̃
−
3; ijk − 1

6 F̃
−
3; ijk−1

(k=1; 2; : : : ; K − 1)
(29c)

At the boundary points the second-order accurate one-side di�erence approximations are used

�c;1=6� F̃+1;0jk =(−3F̃+1;0jk + 4F̃+1;1jk − F̃+1;2jk)=2

�c;−1=6� F̃−
1; Ijk =(3F̃

−
1; Ijk − 4F̃−

1; I−1jk + F̃
−
1; I−2jk)=2

�c;1=6� F̃+2; i0k =(−3F̃+2; i0k + 4F̃+2; i1k − F̃+2; i2k)=2
�c;−1=6� F̃−

2; iJk =(3F̃
−
2; iJk − 4F̃−

2; iJ−1k + F̃
−
2; iJ−2k)=2

�c;1=6& F̃+3; ij0 = (−3F̃+3; ij0 + 4F̃+3; ij1 − F̃+3; ij2)=2
�c;−1=6& F̃−

3; ijK =(3F̃
−
3; ijK − 4F̃−

3; ijK−1 + F̃
−
3; ijK−2)=2

(30)

�c;±1=6� F̃±
1; ijk , �

c;±1=6
� F̃±

2; ijk and �
c;±1=6
& F̃±

3; ijk can be obtained by the alternating direction sweeping
method.
’�(pijk), ’�(pijk) and ’&(pijk) are switch functions, which are similar to formula (11).

They can guarantee that the obtained scheme is O(h3) in smooth regions and the group
velocity of wave packets can be controlled near the shocks. ss�(pijk)= sgn(�2�pijk · �0�pijk),
ss�(pijk)= sgn(�2�pijk · �0�pijk) and ss&(pijk)= sgn(�2&pijk · �0&pijk). 	�(ijk), 	�(ijk) and 	&(ijk) are
the maximum eigenvalues of Al (l=1; 2; 3). pijk denotes the local pressure at node (i; j; k),
�∼O(1).

5. NUMERICAL EXAMPLES FOR MODEL EQUATIONS

To test the behaviour of the method, we consider the following examples.

Example 1
Pulses, wave packets and wave fronts.
In order to test the central compact di�erence operator is a slow operator we compute a

pulses. For a direct observation of group velocity, it is simplest to look at a wave packet
as in Figure 1. The region shown is the interval [0; 10], on which a mesh of size h=0:025
has been placed. The initial packet is several sine waves modulated by a Gaussian centred at
x=0:5, with the di�erent wave-numbers,

u(x; 0)= e−16(x−0:5)
2
(sin 10�x + sin 20�x + sin 30�x)
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Figure 1. Propagation of wave packets with di�erent wave numbers (5, 10, 15) under ut + ux=0.

Figure 2. Propagation of wave packets with �=0:05.

The fourth-order accurate central compact di�erence operator is employed. The third-order
R−K time discretization is employed. In order to reduce the e�ects of the time discretization,
the CFL number is small. Here �t=�x=0:01. Figure 1 shows that the numerical solutions at
the time t=5. We can see that the wave packets move not at the ideal velocity 1, the centre
of the group of waves is not at x=5:5. The central compact di�erence operator is a slow
operator.
Higher wave numbers have lower group velocity and lag behind this position, the low

wave numbers travel at velocity nearly 1, as they must. The dispersion of the waves occurs.
Figure 2 shows the numerical results with �=0:05. We can see that the higher wave numbers
have been damped due to di�usion.

Example 2
The propagation of discontinuity.
Consider the following equation:

@u
@t
+
@u
@x
=0

The initial condition is u(x; 0)=

{
1; x6 1

3

0; x¿ 1
3 :
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Figure 3. Numerical solutions of Example 2.

We will test the upwind compact method with group velocity control. We have known that
the TV of this scheme is bounded in the semi-discrete form. Under the appropriate restriction
on the time step this method satis�es the TVB property.
Here �t=�x=0:1. and IN=201, 06x61. Figure 3 shows that the numerical solutions at

t=500�t with di�erent �, (�=0; �=0:01; �=0:1; �=0:25), respectively.
We can see that the oscillations occur behind the discontinuity with small �. The numerical

oscillations will happen in front of the discontinuity as � increases. Here the solution function
consists of the waves with di�erent wave numbers. When �=0, the compact operator is a slow
operator. The group velocity d Im[�̂cx(�)]=d�61, ∀|�|6�, the propagation of the wave packets
is slower than the velocity 1. The dispersion of the waves occurs behind the discontinuity. With
the increment of � the upwind compact operator becomes the mixed operator. The oscillations
will occur between the two sides of the discontinuity. Here Figures 3(a)–(c) show that the
oscillations occur behind the discontinuity. Figure 3(d) shows that some spurious oscillations
occur between the two sides of the discontinuity. Figure 4 shows the numerical solutions
of the equation by using UCGVC3. The numerical oscillations are suppressed. The result is
satisfactory.
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Figure 4. Numerical solutions with UCGVC3.

Figure 5.

Example 3
Consider the following two-dimensional linear conservation law with variable coe�cients:

ut + (−yu)x + (xu)y=0; −16x; y61
with periodic boundary conditions. The initial condition is chosen as the characteristic function
of a circle of radius 0.5. The governing equation denotes a solid body rotation. The results
at t=2, using 200× 200 points, is shown in Figure 5(b). Figure 5(a) shows that numerical
oscillations occur in the vicinity of the discontinuity when the group velocity is not controlled.
By using UCGVC3 we derive a satisfactory result. The numerical oscillations have been
eliminated.

6. NUMERICAL SIMULATIONS OF COMPRESSIBLE FLOW FIELDS

6.1. Heat transfer problems

6.1.1. Boundary conditions. In order to demonstrate the performance of UCGVC3 we sim-
ulate the compressible �ow �elds around a sphere. The non-skip condition is used on the
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Table I.

Method Mesh Reynolds number Numerical solutions Fay–Riddell’s estimates [13]

UCGVC3 12.46 3:51× 10−3 3:83× 10−3

9.56 3:63× 10−3

7.15 3:73× 10−3

4.58 3:83× 10−3

TVD 12.46 1:70× 10−3

9.56 2:20× 10−3

7.15 2:68× 10−3

4.58 3:15× 10−3

Figure 6. Geometric shape of re-entry vehicle.

surface of the sphere. The free stream conditions are used at the in�ow boundary. 
, 
u, 
v,

w, e at the out�ow are obtained from extrapolation of the interior nodes.

6.1.2. Numerical results and discussions. We simulated the �ow �elds around a sphere
and calculated the heat transfer at the stagnation point by UCGVC3. The in�ow conditions
are: M∞=7:0, Re∞=1:48× 105, T∞=67 K, Tw =300 K. The grid system with 19× 31 is
employed in the present computation. Table I shows the numerical solutions obtained by
UCGVC3 and TVD in the same grid system. Compared with the TVD scheme, UCGVC3
can be used to obtain the better numerical solutions at the higher mesh Reynolds number.

6.2. 3D Compressible �ow �elds around re-entry vehicle

6.2.1. Boundary conditions. In order to demonstrate the performance of UCGVC3 we simu-
late the 3D complex compressible �ow �elds around re-entry vehicles. The non-skip condition
is used on the surface of the spaceship. The circumferential mean values around the symmet-
rical axis are used. The symmetrical conditions are employed in the symmetrical plane. The
free stream conditions are used at the in�ow boundary. 
, 
u, 
v, 
w, e at the out�ow are
obtained from extrapolation of the interior nodes.

6.2.2. Numerical results and discussions. The 3D viscous �ow �elds around re-entry vehi-
cles are very complicated. The shocks and three-dimensional multi-scale separations exist in
such �ow �elds. The aerodynamic heating also occurs on its surface. In order to capture the
shocks and the vortices with small scales, meanwhile, improve the stability of the di�erence
scheme we use UCGVC3 to simulate the 3D �ow �elds. The shape of the re-entry vehicle
is shown in Figure 6. It consists of two parts. Fore-body and after-body, which are cone
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Figure 7. Grid system.

Figure 8. Pressure contours in the symmetrical plane.
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Figure 9. (a) Pressure distribution on the upwind surface (�=20◦). (b) Pressure distribution on the
lee-wind surface (�=20◦). (c) Heat �ux distribution on the upwind surface (�=20◦). (d) Heat �ux

distribution on the lee-wind surface (�=20◦).

and cylinder, respectively. The in�ow conditions are: M∞=7:0, Re∞=4:5× 105, T∞=67K,
Tw =300 K.
The grid system with 62× 41× 21 is employed in the present computation, as shown in

Figure 7. For comparison we also use TVD to simulate the 3D �ow �elds. The same grid
system is used. Due to simulation of the viscous �ow �elds the mesh near the surface of the
re-entry vehicle is re�ned. Figure 8 shows the pressure contours in the symmetrical plane. The
angles of attack are 10 and 20◦, respectively. Q0 denotes the heat �ux at the stagnation point
at the angle of attack 0◦. Q0 = 3:94× 10−3, which is close to the Fay–Riddell’s estimates.
Due to the discontinuity of the curvature at the shoulder of the re-entry vehicle a peak of
heat �ux appears at the shoulder of the vehicle. The amplitude of the peak increases with the
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Figure 10. (a) Experimental friction curves on the surface (�=20◦). (b) Friction curves on the surface
(TVD) (�=20◦). (c) Friction curves on the surface (UCGVC3) (�=20◦).

increment of the curvature of the shoulder. It agrees well with the experiment by Shih [14].
Figure 9 shows the distribution of the pressure and heat �ux on the surface of the vehicle.
It has agreement with the results in Reference [15]. S denotes the arc length. S=0 and Smax
correspond to the apex of the vehicle and export, respectively. Ps denotes the pressure at the
stagnation point. Qs denotes the heat �ux at the stagnation point. When the angle of attack
is 10◦, Qp=Q0�=0◦ =1:21; the angle of attack is 20◦, Qp=Q0�=0◦ =1:36, where Qp denotes the
peak of the heat �ux. Figure 10(c) shows the friction curves on the surface of the vehicle at
the angle of attack 20◦, obtained by UCGVC3. For comparison, Figure 10(a) and (b) show
the experimental results and computational results by TVD, respectively. The tornado on the
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lee-wind surface of the cone has been clearly simulated. However, it is not obvious by the
TVD method. This is because of the over-dissipative e�ects of the TVD method.

7. CONCLUSIONS

In this paper we are interested in investigating an upwind compact di�erence scheme with
group velocity control, calculating the compressible �ow �elds. The purpose of the paper is
to consider the applicability of the newly developed method for capturing the shock and the
small structures in the compressible complex �ow �elds. Compared with the central compact
�nite di�erence scheme, the upwind compact �nite di�erence scheme is an upwind-biased
scheme, which is better for simulation of the 3D compressible �ow �elds due to stability. We
have proved that UCGVC3 satis�es TVB property. This scheme is used to simulate the 3D
compressible �ow �elds around a spaceship. It is useful for both capturing the shocks and
the vortices.
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